Content extract
					
					Propagation of action potential Az akciós potenciál terjedése     Action Potential Propagation Signal spread WITH Na+ channels = “Leak” K channels = Na channels  + + + + + + + + + + + − − − +− − − −+− − − − − − − − − − − − + + + + + Brain Vm : -70 mV  + + + + + + + + + + + + + + + + + + + Muscle     Continuous and Saltatory Propagation of Action Potentials     Pulse Propagation in Myelinated and Unmyelinated Nerve Fibers     Classification of Nerve Fibers     Multiple Sclerosis Multiple sclerosis is a demyelinating disease     Strength-duration curve for action potential Minimal stimulation time  Intensity of Stimulus (current)  Q=IxT 54321-  σ Rheobase  0Chronaxie (σ)  Duration of stimulus (time)     Electrotonic Potential Propagation Signal spread without Na+ channels = “Leak” K channels  + + + −+ − − − − − − − − − − − − − − − − − − + + To Brain Vm : -70 mV  + + + + + + + + + + + + + + + + + + +
+ To Muscle     The Electrotonic Potential • is a transient reversal of the polarity of the membrane potential • does not involve opening of Na+ channels • has no overshoot and involves decrement • travels in both directions     ELECTROTONIC COND.  ACTION POT.  Channels involved  K  K, Na  Action potential?  No  Yes  Decrement  Yes  No  Refractoriness  No  Yes  Summation  Yes  No  Unidirectional  No  Yes     Az akcióspotenciál keletkezése a neuronban Generation of action potential in the neuron     A gerincvelői motoneuron The spinal motor neuron     Szinaptikus transzmisszió  Synaptic transmission     Chemical Synapse     Termination of Transmitter Action     Klasszikus neurotranszmitterek: a szinaptikus végződésben termelődnek Classical neurotransmitters: produced in the synaptic terminal     Neurotransmitters in CNS     Gátló és serkentő neurotranszmitterek Inhibitory and excitatory neurotransmitters     Electrical synapse  •Rapid •Few CNS neurons, glia
•Cardiac muscle •Smooth muscle  At gap junctions, ions and small molecules pass through connexon channels formed by connexins. In some electrical synapses, the synapse conducts more in one direction than in the opposite; this is called rectification.   Electrophysiology of synaptic transmission     Arriving AP(s) (1) Depolarize the presynaptic terminal and (2) Trigger Ica through voltagesensitive Ca2+ channels, which causes transmitter release (3) Transmitter binding to the postsynaptic receptors triggers a PSP, in this example an EPSP, that in VM = -70 mV this case is large enough to 2 Pre(4) Trigger a postsynaptic AP  synaptic Ica  VM = +20 mV 4 Post-synaptic AP  1 Pre-synaptic AP  3 Post-synaptic EPSP (or IPSP)  0.5 msec   Electrophysiology of synaptic transmission    Synaptic delay is time between onset of the pre- and postsynaptic potentials - For ionotropic receptormediated PSPs, delay is ≥ 0.3 msec, usually 1–5 msec, mostly due to slow, presynaptic Ca2+ influx -
Longer delay for indirect gating, due to additional steps VM = -70 mV (i.e, effector enzymes) - Negligible delay for electrical 2 Presynapses (but no complex synaptic Ica summation can occur)  VM = +20 mV 4 Post-synaptic AP  1 Pre-synaptic AP  3 Post-synaptic EPSP (or IPSP)  0.5 msec     Synaptic transmission is amplitude modulated, beginning with graded Ca2+ influx  PSP amplitude is proportional to presynaptic Ica  PSP amplitude is determined by channel conductance (rate of ionic flux) EPSP and by driving force (IEPSP = gEPSP [VM - EEPSP])  Presynaptic ICa  Presynaptic Vhold How PSP amplitude depends on presynaptic depolarization and Ca2+ influx. A presynaptic terminal is clamped at a range of depolarizing potentials (Vhold). At each potential, the clamp electrode records the presynaptic Ica and a second electrode records the resulting EPSP.     Postsynaptic Potentials  • Em changes dendrites & soma • Excitatory: + • Inhibitory: -   Record here    EPSP + +  Em - 65 mv
- 70 mv  • Depolarization more likely to fire AT REST  Time     Temporal Summation +  Em  + • Repeated stimulation • same synapse  - 65 mv - 70 mv  AT REST  Time     Temporal Summation +  +  more depolarization  Em - 65 mv - 70mv  AT REST  Time     Temporal Summation +  +  more depolarization  Em - 65 mv - 70 mv  AT REST  Time     Temporal Summation     Spatial Summation +  +  Em  +  • Multiple synapses  - 65mv - 70mv  AT REST  Time     Spatial Summation     IPSPs • Inhibitory Postsynaptic Potential • similar to EPSPs EXCEPT opposite • hyperpolarization (-) – Em becomes more negative • Cl- influx or K+ efflux     IPSP +  Em  • Hyperpolarization less likely to fire also summate (max)  - 70mv  AT REST  Time     Effect of IPSP on Postsynaptic Stimulation     EPSPs & IPSPs summate • CANCEL EACH OTHER • Net stimulation – EPSPs + IPSPs = net effects     +  + - 70mv  -  EPSP  IPSP     EPSP  IPSP threshold  -70mV  toward threshold  away from threshold     EPSP 
IPSP  Effect  Excitation  Inhibition (or blockade of excitation)  Change in potential  Depolarization  Hyperpolarization (or inhibition of depolarization)  Mechanism  Opening of Na channels  Opening of K or Cl channels  Example(s)  Nicotinic Ach receptor, NMDA receptor  GABA-A, GABA-B receptor, Glycine receptor  Summation  Yes  Yes     Characteristic features of an excitatory synapse - A specific excitatory neurotransmitter is released from the presynaptic terminal via EXOCYTOSIS to initiate the excitatory postsynaptic response. - A specific excitatory postsynaptic receptor is necessary to initiate the excitatory postsynaptic response - Extracellular Ca2+ is ALWAYS necessary in the synaptic cleft to release neurotransmitter. This calcium release is usually elicited by DEPOLARIZATION of the presynaptic membrane. - A presynaptic action potential does not always initiate a postsynaptic action potential: summation may be needed. - In the absence of inhibitory input the excitatory
neurotransmitter released always generates a local transient, non-propagated postsynaptic depolarization involving an increase in gNa     Presynaptic Modulation • Modifying PSP by influencing presynaptic neuron • Presynaptic inhibition ↓ amount of NT released  • Presynaptic facilitation amount of NT released     Presynaptic Inhibition Excitatory Synapse A  +  • A active • B more likely to fire  B     Presynaptic Inhibition Excitatory Synapse A  -  +  C  • axoaxonic synapse • C is inhibitory  B     Presynaptic Inhibition Excitatory Synapse A  -  +  C  • C active • less NT from A • B less likely to fire  B     Presynaptic Inhibition Inhibitory Synapse A  -  -  C  • C active • less NT from A • B more likely to fire  B     Presynaptic Facilitation Excitatory Synapse A  +  +  C  • C active (excitatory) • more NT from A • B more likely to fire  B     A Facilitáció jelensége The phenomenon of Facilitation  Amikor egy idegsejten EPSPk szummálódnak,
amelyek nem elegendőek egy AP kiváltására, de megkönnyítik a következő EPSPk számára az AP kiváltását. („Facilitált neuron”) When EPSPs collect on a neuron, which are not quite sufficient to induce an AP, but make it easier for subsequent EPSPs to induce an AP. (“Facilitated neuron”)        1.  2. 3. 4.  5.  6. 7.  A klasszikus neurotranszmitterek a szinaptikus vezikulumokban termelődnek és tárolódnak (kivétel: neuropeptidek: a neuron testében termelődik és axonális transzporttal jut le a szinapszishoz. Akciós potenciál érkezik a preszinaptikus végzôdéshez Feszültségfüggő Ca2+ csatornák nyílnak. Az IC Ca2+ emelkedése a szinaptikus vezikulumok és a szinapszis membrán fúzióját triggereli (exocitózis). A traszmitter (ACh) átdiffundál a szinaptikus résben és elérik a posztszinaptikus membrán nikotinos ACh receptorait. A posztszinaptikus sejt aktiválódik: depolarizáció és izomkontrakció A neurotranszmitter lebomlik és/vagy újra
felvevődik.  Kolinerg neuro-transzmisszió Cholinergic neurotransmission     Adrenergic Synapses     The neuromuscular transmission Neuromuszkuláris transzmisszió     A neuromuszkuláris junkció The neuromuscular junction     Neuromuscular Transmission  Axon Axon Terminal  Skeletal Muscle     Depolarization Nerve action of terminal opens Cainvades channels + potential axon terminal +  -  - + + ++ Look - + here + -  Neuromuscular Transmission:  -+  Step by Step - + +  -+  -     Binding ofreleased ACh opens Ca+2binds induces fusion ACh to its ACh is and of channel pore that is vesicles with receptor on the nerve diffuses across + and K+. permeable to Na terminal membrane. postsynaptic membrane synaptic cleft.  ACh ACh ACh  Ca+2  Ca+2  Na+  Na+  Na+ K+  Na+ K+  Na+  K+  ACh  Na+  K+  Na+  Na+  Na+  K+  Outside  Muscle membrane Na+ K+  Na+ K+  Na+  K+  Inside  K+  Na+  K+  K+  K+ K+  Na+     End Plate Potential (EPP)  Presynaptic terminal  VNa  Muscle Membrane Voltage (mV)  The
movement of Na+ and K+ depolarizes muscle membrane potential (EPP)  0 EPP Threshold  -90 mV VK Presynaptic AP  Time (msec)  Outside  Muscle membrane  Inside ACh Receptor Channels  Na Channels     ACh Choline  ACh ACh  Meanwhile .  ACh isthe by Choline Choline ishydrolyzed taken upfrom ACh unbinds soresynthesized channel closes AChE into Choline into ACh and repackaged into nerve terminal its receptor Choline acetate into and vesicle ACh Acetate  ACh Outside Muscle membrane Inside     A szinaptikus áttevődés folyamata a neuromuszkuláris junkcióban Summary of events that occur during neuromuscular transmission     Neuromuscular Transmission • Properties of neuromuscular junction designed to assure that every presynaptic action potential results in a postsynaptic one (i.e 1:1 transmission) • The NMJ is a site of considerable clinical importance     Pharmacology of the NMJ